Open In App

Artificial Intelligence Tutorial | AI Tutorial

Last Updated : 30 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and act like humans. It involves the development of algorithms and computer programs that can perform tasks that typically require human intelligence such as visual perception, speech recognition, decision-making, and language translation. 

ai-tutorials-copy

Artificial Intelligence Tutorial

There are various Definition provided by the scientists of various fields about Artificial Intelligence, some of them are mentioned below:

“Artificial Intelligence is the study of how to make computers do things at which, at the movement, people are better”. ~ Rich and Knight (1991)

“Artificial Intelligence is the study of the computations that make it possible to perceive, reason and act.” ~ Winston (1992)

“AI is the study of mental faculties through the use of computational models”. ~ Charniak and McDermott (1985)

AI Tutorial:

Introduction to Artificial Intelligence

Artificial Intelligence (AI) is a rapidly evolving field of computer science that focuses on creating intelligent machines capable of simulating human-like cognitive processes. At its core, AI seeks to enable machines to perceive their environment, learn from experience, reason, and make decisions autonomously. From virtual personal assistants and recommendation systems to autonomous vehicles and healthcare diagnostics, AI has become increasingly integrated into various aspects of our lives, revolutionizing industries and reshaping the way we interact with technology. As AI continues to advance, it holds the promise of solving complex problems, driving innovation, and transforming society in profound ways.

Searching Algorithms in Artificial Intelligence

Searching algorithms in artificial intelligence play a fundamental role by providing systematic methods for navigating through vast solution spaces to find optimal or satisfactory solutions to problems. These algorithms operate on various data structures, such as graphs or trees, to explore possible paths and discover solutions efficiently.

Searching algorithms are integral components in problem-solving, pathfinding, and optimization tasks across diverse AI applications, enabling systems to make decisions and find effective solutions in complex and dynamic environments. The choice of a specific searching algorithm depends on the characteristics of the problem domain, the available information, and the desired balance between computational efficiency and solution optimality.

AI-Search-Algorithms

AI Search Algorithms

Traditional Searching Algorithms in Artificial Intelligence

Non-Traditional Searching Algorithms in Artificial Intelligence

Constraint Satisfaction Problem in AI

A Constraint Satisfaction Problem (CSP) is a problem-solving framework in Artificial intelligence. It involves variables, each with a domain of possible values, and constraints limiting the combinations of variable values. The objective is to find a consistent assignment satisfying all constraints. CSPs are widely used in scheduling, configuration, and optimization problems. Algorithms like backtracking and constraint propagation are employed to efficiently explore the solution space and find valid assignments.

  • Introduction of Constraint Satisfaction Problem
  • Problem Structure in CSP’s
  • Constraint Propagation in CSP’s
  • Backtracking Search for CSP’s
  • Local Search for CSP’s

Agents in Artificial Intelligence

Agents in Artificial Intelligence are computer programs or systems that is designed to perceive its environment, make decisions and take actions to achieve a specific goal or set of goals. The agent operates autonomously, meaning it is not directly controlled by a human operator.

Types-of-Agents

Types of Agents

  • Introduction to Agents
    • What is an Agent?
    • Types of Agents
    • Characteristics of Intelligent Agents
    • Implications of Agent-Based AI
    • Future Prospects and Trends
  • Agent Architectures
    • Reactive Architectures
      • Simple Reflex Agents
      • Model-Based Reflex Agents
    • Deliberative Architectures
    • Hybrid Architectures
      • Integrating Multiple Architectures
      • Hierarchical Architectures
  • Perception in Agents
    • Role of Perception in Intelligent Systems
    • Sensors and Actuators
    • Techniques for Perception
      • Sensor Data Processing
      • Handling Uncertainty
      • Feature Extraction
  • Action in Agents
    • Decision-Making in Agents
    • Types of Actions
      • Simple Actions
      • Complex Actions
    • Techniques for Action Selection
  • Agent Communication
    • Communication in Multi-Agent Systems
    • Coordination and Cooperation
    • Negotiation Protocols
    • Communication Languages and Protocols
      • FIPA-ACL
      • KQML
      • JSON-RPC
  • Agent Environments
    • Types of Environments
    • Fully Observable vs. Partially Observable
      • Deterministic vs. Stochastic
      • Episodic vs. Sequential
      • Static vs. Dynamic
      • Agent-Environment Interaction
    • Properties of Environments
    • Agent-Environment Interaction
    • Environment Modelling
  • Agent Learning
  • Knowledge Representation and Reasoning
    • Representing Knowledge in Agents
      • Logic-Based Representation
      • Semantic Networks
      • Frames and Scripts
      • Ontologies
    • Reasoning Mechanisms
  • Applications of Intelligent Agents
  • Challenges and Future Directions

First Order Logic in Artificial Intelligence

First Order Logic (FOL) is crucial for representing and reasoning about complex knowledge structures. By introducing variables, quantifiers, and predicates, FOL extends propositional logic to express relationships and constraints more precisely.

Variables serve as placeholders for specific objects, predicates denote relationships between these objects, and quantifiers specify the scope of variables.

  • Introduction
    • Overview of Logic in AI
    • Importance of First Order Logic
    • Historical Context
  • Basics of First Order Logic
  • Syntax and Semantics of First Order Logic
    • Syntax
      • Terms and Formulas
      • Connectives and Quantifiers
      • Well-Formed Formulas (WFFs)
    • Semantics
      • Interpretations and Models
      • Truth Assignments
      • Satisfaction and Validity
  • Inference Rules in First Order Logic
    • Modus Ponens
    • Universal Instantiation
    • Existential Instantiation
    • Generalization Rules
    • Resolution in First Order Logic
  • Knowledge Representation in First Order Logic
  • Reasoning in First Order Logic
    • Deductive Reasoning
    • Inductive Reasoning
    • Abductive Reasoning
    • Common Inference Problems
  • Applications of First Order Logic in AI
  • Challenges and Limitations
  • Advances and Future Directions
    • Hybrid Approaches
    • Probabilistic Extensions
    • Deep Learning and First Order Logic
    • Open Challenges and Research Opportunities
  • Conclusion
    • Summary of Key Points
    • Importance of First Order Logic in AI
    • Future Prospects and Trends

Planning in Artificial Intelligence

Planning is a critical part of Artificial Intelligence which deals with the actions and domains of a particular problem. Planning is considered as the reasoning side of acting. Everything we humans do is with a certain goal in mind and all our actions are oriented towards achieving our goal. In a similar fashion, planning is also done for Artificial Intelligence.

  • Classical Planning:
    • Introduction of Classical Planning
      • Define Classical Planning?
      • Characteristics of Classical Planning
    • Algorithms for planning as state space search
    • Planning Graphs
    • Other Classical planning Approach
      • STRIPS (Stanford Research Institute Problem Solver)
      • SAS+ (State, Action, Successor state)
      • ADL (Action Description Language)
      • Comparative Analysis of Classical Planning Approaches
    • Analysis of planning approaches
  • Real World Planning:
    • What is Planning in Real world
    • Hierarchical Planning
    • Planning and Acting in Nondeterministic Domains
    • Multiagent Planning
    • Analysis of Planning Approaches in Real-World Context
      • Handling Uncertainty in Real-World Planning
      • Adaptability and Robustness Metrics
      • Scalability in Real-World Planning
      • Interactions Between Multiple Agents

Uncertain Knowledge and Reasoning in Artificial Intelligence

Uncertain knowledge and reasoning in AI address situations with incomplete or imprecise information. Techniques like probabilistic reasoning (Bayesian networks), fuzzy logic, and Dempster-Shafer theory allow AI systems to model and adapt to uncertainty, enhancing decision-making in dynamic environments.

  • Quantifiable Uncertainty in Artificial Intelligence
    • Basic Probabilistic Notation
    • Interference using full join distributions
    • Bayes Rule and its use in AI
  • Probabilistic Reasoning in Artificial Intelligence
    • Representing Knowledge in Uncertain Domain
    • The Semantics of Bayesian Networks
    • Efficient Representation of Conditional Distributions
    • Exact Inference in Bayesian Networks
    • Approximate Inference in Bayesian Networks
    • Relational And First Order Probability Models
    • Another Approaches to Uncertain Reasoning
  • Probabilistic Reasoning over Time
    • Time and Uncertainty
    • Inference in Temporal Models
    • Hidden Markov Models
    • Kalman filters
    • Dynamic Bayesian Network
    • Keeping track of Many Object
  • Simple and Complex Decision making in Artificial Intelligence

Learning in Artificial Intelligence

Learning is a core aspect of Artificial intelligence (AI), enabling systems to improve performance through experience. Machine learning, a key subset of AI, includes supervised learning, unsupervised learning, and reinforcement learning . Algorithms, such as neural networks and decision trees, automate pattern recognition and decision-making. Continuous advancements in learning algorithms and data availability drive the evolution of AI capabilities, allowing systems to adapt and optimize performance.

Communication and Robotics in Artificial Intelligence

AI communication includes NLP for language understanding (e.g., chatbots), while AI robotics integrates computer vision and machine learning for autonomous task execution. The synergy enhances human-robot collaboration in applications ranging from industry to Healthcare Technologies.

Uses of Artificial Intelligence-AI in Real life

Here are some Real life examples of Artificial Intelligence:

  • Virtual Personal Assistants: Siri, Google Assistant, and Amazon Alexa use AI to understand and respond to natural language commands.
  • Image and Speech Recognition: Facial recognition technology in social media platforms, and speech-to-text features in applications like Google’s Voice Typing, leverage AI for accurate identification and interpretation.
  • Autonomous Vehicles: Self-driving cars utilize AI algorithms to process data from sensors, cameras, and radars for real-time decision-making on the road.
  • Chatbots and Virtual Agents: Customer support chatbots on websites and virtual agents in gaming environments use AI to simulate human-like interactions.
  • Healthcare Diagnostics: AI applications analyse medical data for early detection of diseases, such as the use of machine learning models in interpreting medical images like X-rays and MRIs.
  • Fraud Detection: Financial institutions employ AI algorithms to detect patterns and anomalies in transactions, aiding in the prevention of fraudulent activities.
  • Language Translation: Services like Google Translate use natural language processing algorithms to translate text between different languages.
  • Robotics: Advanced robots equipped with AI capabilities are employed in manufacturing, healthcare, and logistics for tasks ranging from assembly to surgery.

These examples showcase the impact of artificial intelligence across diverse sectors, enhancing efficiency, decision-making, and user experiences.

Other Topics in Artificial Intelligence



Previous Article
Next Article

Similar Reads

Difference Between Artificial Intelligence and Business Intelligence
Artificial Intelligence: Artificial intelligence is the field of computer science associated with making machines that are programmed to be capable of thinking and solving problems like the human brain. These machines can perform human-like tasks and can also learn from past experiences like human beings. Artificial intelligence involves advanced a
3 min read
Super Intelligence vs Artificial Intelligence
Super Intelligence vs Artificial Intelligence: Artificial Super intelligence is like a computer program that can be smarter than people. It learns and thinks by itself. Artificial Intelligence (AI) has become a widely talked-about topic in today’s rapidly changing world. In this article, we are going to discuss super intelligence vs artificial inte
6 min read
Difference Between Artificial Intelligence and Human Intelligence
Artificial Intelligence: Artificial Intelligence is based on human insights that can be decided in a way that can machine can effortlessly actualize the tasks, from the basic to those that are indeed more complex. The reason for manufactured insights is learning, problem-solving, reasoning, and perception. This term may be connected to any machines
5 min read
Top 5 Programming Languages For Artificial Intelligence
In recent years, Artificial Intelligence has seen exponential growth and innovation in the field of technology. As the demand for Artificial intelligence among companies and developers is continuously increasing and several programming languages have emerged as popular choices for the Artificial Intelligence Development field, so, in that case, the
5 min read
Introduction to Hill Climbing | Artificial Intelligence
Hill climbing is a simple optimization algorithm used in Artificial Intelligence (AI) to find the best possible solution for a given problem. It belongs to the family of local search algorithms and is often used in optimization problems where the goal is to find the best solution from a set of possible solutions. In Hill Climbing, the algorithm sta
11 min read
Emergence Of Artificial Intelligence
Concept of AI goes back to the classical ages. Under greek mythology, the concept of machines and mechanical men were well thought of. In 1950, “ALAS TURING”, published landmark paper “Computing Machinery and Intelligence”, proposes the “Imitation Game”, known as the famous “TURING TEST” He speculated about the possibility of creating machines that
5 min read
Agents in Artificial Intelligence
In artificial intelligence, an agent is a computer program or system that is designed to perceive its environment, make decisions and take actions to achieve a specific goal or set of goals. The agent operates autonomously, meaning it is not directly controlled by a human operator. Agents can be classified into different types based on their charac
11 min read
Integration of Artificial Intelligence and BlockChain
Artificial Intelligence and Blockchain are proving to be quite a powerful combination, improving virtually every industry in which they're implemented. These technologies can be combined to upgrade everything from food supply chain logistics and healthcare record sharing to media royalties and financial security. The integration of AI and Blockchai
8 min read
Impacts of Artificial Intelligence in everyday life
When we talk about Artificial Intelligence, it's easy to imagine some dystopian science fiction future where robots have taken over the world and enslaved us. But AI is actually a way to enable people to accomplish more by collaborating with smart software. We need to think of it as putting a more human face on technology: Technology that can learn
4 min read
Game Playing in Artificial Intelligence
Game Playing is an important domain of artificial intelligence. Games don't require much knowledge; the only knowledge we need to provide is the rules, legal moves and the conditions of winning or losing the game. Both players try to win the game. So, both of them try to make the best move possible at each turn. Searching techniques like BFS(Breadt
5 min read