Open In App

Counting Sort – Data Structures and Algorithms Tutorials

Last Updated : 09 Mar, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

What is Counting Sort?

Counting Sort is a non-comparison-based sorting algorithm that works well when there is limited range of input values. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that information to place the elements in their correct sorted positions.

How does Counting Sort Algorithm work?

Step1 :

  • Find out the maximum element from the given array.

Finding maximum element in inputArray[]

Step 2:

  • Initialize a countArray[] of length max+1 with all elements as 0. This array will be used for storing the occurrences of the elements of the input array.

Initialize countArray[]

Step 3:

  • In the countArray[], store the count of each unique element of the input array at their respective indices.
  • For Example: The count of element 2 in the input array is 2. So, store 2 at index 2 in the countArray[]. Similarly, the count of element 5 in the input array is 1, hence store 1 at index 5 in the countArray[].

Maintain count of each element in countArray[]

Step 4:

  • Store the cumulative sum or prefix sum of the elements of the countArray[] by doing countArray[i] = countArray[i – 1] + countArray[i]. This will help in placing the elements of the input array at the correct index in the output array.

Store the cumulative sum in countArray[]

Step 5:

  • Iterate from end of the input array and because traversing input array from end preserves the order of equal elements, which eventually makes this sorting algorithm stable.
  • Update outputArray[ countArray[ inputArray[i] ] – 1] = inputArray[i].
  • Also, update countArray[ inputArray[i] ] = countArray[ inputArray[i] ]– -.

5

Step 6: For i = 6,

Update outputArray[ countArray[ inputArray[6] ] – 1] = inputArray[6]
Also, update countArray[ inputArray[6] ] = countArray[ inputArray[6] ]- –

Placing inputArray[6] at it correct position in outputArray[]

Step 7: For i = 5,

Update outputArray[ countArray[ inputArray[5] ] – 1] = inputArray[5]
Also, update countArray[ inputArray[5] ] = countArray[ inputArray[5] ]- –

Placing inputArray[5] at it correct position in outputArray[]

Step 8: For i = 4,

Update outputArray[ countArray[ inputArray[4] ] – 1] = inputArray[4]
Also, update countArray[ inputArray[4] ] = countArray[ inputArray[4] ]- –

Placing inputArray[4] at it correct position in outputArray[]

Step 9: For i = 3,

Update outputArray[ countArray[ inputArray[3] ] – 1] = inputArray[3]
Also, update countArray[ inputArray[3] ] = countArray[ inputArray[3] ]- –

Placing inputArray[3] at it correct position in outputArray[]

Step 10: For i = 2,

Update outputArray[ countArray[ inputArray[2] ] – 1] = inputArray[2]
Also, update countArray[ inputArray[2] ] = countArray[ inputArray[2] ]- –

Placing inputArray[2] at it correct position in outputArray[]

Step 11: For i = 1,

Update outputArray[ countArray[ inputArray[1] ] – 1] = inputArray[1]
Also, update countArray[ inputArray[1] ] = countArray[ inputArray[1] ]- –

Placing inputArray[1] at it correct position in outputArray[]

Step 12: For i = 0,

Update outputArray[ countArray[ inputArray[0] ] – 1] = inputArray[0]
Also, update countArray[ inputArray[0] ] = countArray[ inputArray[0] ]- –

Placing inputArray[0] at it correct position in outputArray[]

Counting Sort Algorithm:

  • Declare an auxiliary array countArray[] of size max(inputArray[])+1 and initialize it with 0.
  • Traverse array inputArray[] and map each element of inputArray[] as an index of countArray[] array, i.e., execute countArray[inputArray[i]]++ for 0 <= i < N.
  • Calculate the prefix sum at every index of array inputArray[].
  • Create an array outputArray[] of size N.
  • Traverse array inputArray[] from end and update outputArray[ countArray[ inputArray[i] ] – 1] = inputArray[i]. Also, update countArray[ inputArray[i] ] = countArray[ inputArray[i] ]- – .

Below is the implementation of the above algorithm:

Java




import java.util.Arrays;
 
public class CountSort {
    public static int[] countSort(int[] inputArray) {
        int N = inputArray.length;
        int M = 0;
 
        for (int i = 0; i < N; i++) {
            M = Math.max(M, inputArray[i]);
        }
 
        int[] countArray = new int[M + 1];
 
        for (int i = 0; i < N; i++) {
            countArray[inputArray[i]]++;
        }
 
        for (int i = 1; i <= M; i++) {
            countArray[i] += countArray[i - 1];
        }
 
        int[] outputArray = new int[N];
 
        for (int i = N - 1; i >= 0; i--) {
            outputArray[countArray[inputArray[i]] - 1] = inputArray[i];
            countArray[inputArray[i]]--;
        }
 
        return outputArray;
    }
 
    public static void main(String[] args) {
        int[] inputArray = {4, 3, 12, 1, 5, 5, 3, 9};
        int[] outputArray = countSort(inputArray);
 
        for (int i = 0; i < inputArray.length; i++) {
            System.out.print(outputArray[i] + " ");
        }
    }
}


C#




using System;
using System.Collections.Generic;
 
class GFG
{
    static List<int> CountSort(List<int> inputArray)
    {
        int N = inputArray.Count;
        // Finding the maximum element of the array inputArray[].
        int M = 0;
        for (int i = 0; i < N; i++)
            M = Math.Max(M, inputArray[i]);
        // Initializing countArray[] with 0
        List<int> countArray = new List<int>(new int[M + 1]);
        // Mapping each element of inputArray[] as an index
        // of countArray[] array
        for (int i = 0; i < N; i++)
            countArray[inputArray[i]]++;
        // Calculating prefix sum at every index
        // of array countArray[]
        for (int i = 1; i <= M; i++)
            countArray[i] += countArray[i - 1];
        // Creating outputArray[] from the countArray[] array
        List<int> outputArray = new List<int>(new int[N]);
        for (int i = N - 1; i >= 0; i--)
        {
            outputArray[countArray[inputArray[i]] - 1] = inputArray[i];
            countArray[inputArray[i]]--;
        }
        return outputArray;
    }
    // Driver code
    static void Main()
    {
        // Input array
        List<int> inputArray = new List<int> { 4, 3, 12, 1, 5, 5, 3, 9 };
        // Output array
        List<int> outputArray = CountSort(inputArray);
        for (int i = 0; i < inputArray.Count; i++)
            Console.Write(outputArray[i] + " ");
        Console.WriteLine();
    }
}


Javascript




function countSort(inputArray) {
    const N = inputArray.length;
 
    // Finding the maximum element of inputArray
    let M = 0;
    for (let i = 0; i < N; i++) {
        M = Math.max(M, inputArray[i]);
    }
 
    // Initializing countArray with 0
    const countArray = new Array(M + 1).fill(0);
 
    // Mapping each element of inputArray as an index of countArray
    for (let i = 0; i < N; i++) {
        countArray[inputArray[i]]++;
    }
 
    // Calculating prefix sum at every index of countArray
    for (let i = 1; i <= M; i++) {
        countArray[i] += countArray[i - 1];
    }
 
    // Creating outputArray from countArray
    const outputArray = new Array(N);
    for (let i = N - 1; i >= 0; i--) {
        outputArray[countArray[inputArray[i]] - 1] = inputArray[i];
        countArray[inputArray[i]]--;
    }
 
    return outputArray;
}
 
// Driver code
const inputArray = [4, 3, 12, 1, 5, 5, 3, 9];
 
// Sorting the input array
const outputArray = countSort(inputArray);
 
// Printing the sorted array
console.log(outputArray.join(' '));
//This code is contributed by Utkarsh


C++14




#include <bits/stdc++.h>
using namespace std;
 
vector<int> countSort(vector<int>& inputArray)
{
 
    int N = inputArray.size();
 
    // Finding the maximum element of array inputArray[].
    int M = 0;
 
    for (int i = 0; i < N; i++)
        M = max(M, inputArray[i]);
 
    // Initializing countArray[] with 0
    vector<int> countArray(M + 1, 0);
 
    // Mapping each element of inputArray[] as an index
    // of countArray[] array
 
    for (int i = 0; i < N; i++)
        countArray[inputArray[i]]++;
 
    // Calculating prefix sum at every index
    // of array countArray[]
    for (int i = 1; i <= M; i++)
        countArray[i] += countArray[i - 1];
 
    // Creating outputArray[] from countArray[] array
    vector<int> outputArray(N);
 
    for (int i = N - 1; i >= 0; i--)
 
    {
        outputArray[countArray[inputArray[i]] - 1]
            = inputArray[i];
 
        countArray[inputArray[i]]--;
    }
 
    return outputArray;
}
 
// Driver code
int main()
 
{
 
    // Input array
    vector<int> inputArray = { 4, 3, 12, 1, 5, 5, 3, 9 };
 
    // Output array
    vector<int> outputArray = countSort(inputArray);
 
    for (int i = 0; i < inputArray.size(); i++)
        cout << outputArray[i] << " ";
 
    return 0;
}


Python3




def count_sort(input_array):
    # Finding the maximum element of input_array.
    M = max(input_array)
 
    # Initializing count_array with 0
    count_array = [0] * (M + 1)
 
    # Mapping each element of input_array as an index of count_array
    for num in input_array:
        count_array[num] += 1
 
    # Calculating prefix sum at every index of count_array
    for i in range(1, M + 1):
        count_array[i] += count_array[i - 1]
 
    # Creating output_array from count_array
    output_array = [0] * len(input_array)
 
    for i in range(len(input_array) - 1, -1, -1):
        output_array[count_array[input_array[i]] - 1] = input_array[i]
        count_array[input_array[i]] -= 1
 
    return output_array
 
# Driver code
if __name__ == "__main__":
    # Input array
    input_array = [4, 3, 12, 1, 5, 5, 3, 9]
 
    # Output array
    output_array = count_sort(input_array)
 
    for num in output_array:
        print(num, end=" ")


Output

1 3 3 4 5 5 9 12 


Complexity Analysis of Counting Sort:

  • Time Complexity: O(N+M), where N and M are the size of inputArray[] and countArray[] respectively.
    • Worst-case: O(N+M).
    • Average-case: O(N+M).
    • Best-case: O(N+M).
  • Auxiliary Space: O(N+M), where N and M are the space taken by outputArray[] and countArray[] respectively.

Advantage of Counting Sort:

  • Counting sort generally performs faster than all comparison-based sorting algorithms, such as merge sort and quicksort, if the range of input is of the order of the number of input.
  • Counting sort is easy to code
  • Counting sort is a stable algorithm.

Disadvantage of Counting Sort:

  • Counting sort doesn’t work on decimal values.
  • Counting sort is inefficient if the range of values to be sorted is very large.
  • Counting sort is not an In-place sorting algorithm, It uses extra space for sorting the array elements.


Similar Reads

Does a Data Scientist/Machine Learning Engineer require in depth knowledge of Data Structures and Algorithms?
In today's world, data scientists and machine learning engineers play a crucial role in analyzing data and building intelligent systems. As technology continues to advance, the demand for these experts is growing rapidly. Real-world data problems are complex, requiring strong skills in handling data and creating efficient algorithms. In this articl
10 min read
Need of Data Structures and Algorithms for Deep Learning and Machine Learning
Deep Learning is a field that is heavily based on Mathematics and you need to have a good understanding of Data Structures and Algorithms to solve the mathematical problems optimally. Data Structures and Algorithms can be used to determine how a problem is represented internally or how the actual storage pattern works &amp; what is happening under
6 min read
Why Data Structures and Algorithms are "Must Have" for Developers and Where to learn them : Answered
With advancement and innovation in technology, programming is becoming a highly in-demand skill for Software Developers. Everything you see around yourself from Smart TVs, ACs, Lights, Traffic Signals uses some kind of programming for executing user commands. In order to be irreplaceable, one must always be efficient. Data Structures and Algorithms
4 min read
Data Structures and Algorithms Online Courses : Free and Paid
Data Structures and Algorithms is one of the most important skills that every computer science student must-have. It is often seen that people with good knowledge of these technologies are better programmers than others and thus, crack the interviews of almost every tech giant. Now, you must be thinking to opt for a quality DSA Course to build
8 min read
Data Structures and Algorithms | Set 36
Que - 1. The function shiftNode() which takes as input two linked lists- destination and source. It deletes front node from source and places it onto the front of destination. Choose the set of statements which replace X, Y, Z in given function. void shiftNode(struct node** destRoot, struct node** srcRoot) { // the front of source node struct node*
4 min read
Data Structures and Algorithms | Set 37
Que - 1. For 8 keys and 6 slots in a hashing table with uniform hashing and chaining, what is the expected number of items that hash to a particular location. (A) 2.33 (B) 0.75 (C) 1.33 (D) 2 Solution: Probability that key1 ends up in slot 1 = 1/6 Probability that key2 ends up in slot 1 = 1/6 Probability that key3 ends up in slot x = 1/6 Probabilit
4 min read
Difference between Data Structures and Algorithms
What are Data Structures and Algorithms? Data structures and algorithms are two interrelated concepts in computer science. Data structures refer to the organization, storage, and retrieval of data, while algorithms refer to the set of instructions used to solve a particular problem or perform a specific task. Applications of Data Structures and Alg
2 min read
Introduction to Rolling Hash - Data Structures and Algorithms
A rolling hash is a hash function that is used to efficiently compute a hash value for a sliding window of data. It is commonly used in computer science and computational biology, where it can be used to detect approximate string matches, find repeated substrings, and perform other operations on sequences of data. The idea behind a rolling hash is
15+ min read
Are Data Structures and Algorithms important for Web Developers?
Web development is constantly changing, and new languages, technologies, and tools are emerging to help developers create engaging and functional web applications. Despite these additions, some basic concepts remain the same no matter what kind of development we are talking about, what language we’re using, or what platform we’re working on. Two of
7 min read
Real-life Applications of Data Structures and Algorithms (DSA)
You may have heard that DSA is primarily used in the field of computer science. Although DSA is most commonly used in the computing field, its application is not restricted to it. The concept of DSA can also be found in everyday life. Here we'll address the common concept of DSA that we use in our day-to-day lives. Application of DataStructure Appl
10 min read
Article Tags :
Practice Tags :
three90RightbarBannerImg