Open In App

Introduction to Sorting Techniques

Last Updated : 28 Jun, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure.

When we have a large amount of data, it can be difficult to deal with it, especially when it is arranged randomly. When this happens, sorting that data becomes crucial. It is necessary to sort data in order to make searching easier.

Introduction-to-Sorting-Techniques

Types of Sorting Techniques

There are various sorting algorithms are used in data structures. The following two types of sorting algorithms can be broadly classified:

  1. Comparison-based: We compare the elements in a comparison-based sorting algorithm)
  2. Non-comparison-based: We do not compare the elements in a non-comparison-based sorting algorithm)
Sorting algorithm

Sorting algorithm

Why Sorting Algorithms are Important

The sorting algorithm is important in Computer Science because it reduces the complexity of a problem. There is a wide range of applications for these algorithms, including searching algorithms, database algorithms, divide and conquer methods, and data structure algorithms.

In the following sections, we list some important scientific applications where sorting algorithms are used  

  • When you have hundreds of datasets you want to print, you might want to arrange them in some way.
  • Sorting algorithm is used to arrange the elements of a list in a certain order (either ascending or descending).
  • Searching any element in a huge data set becomes easy. We can use Binary search method for search if we have sorted data. So, Sorting become important here.
  • They can be used in software and in conceptual problems to solve more advanced problems.  

Some of the most common sorting algorithms are:

Below are some of the most common sorting algorithms:

1. Selection sort

Selection sort is another sorting technique in which we find the minimum element in every iteration and place it in the array beginning from the first index. Thus, a selection sort also gets divided into a sorted and unsorted subarray.

Working of Selection Sort algorithm:

Lets consider the following array as an example: arr[] = {64, 25, 12, 22, 11}

First pass:

For the first position in the sorted array, the whole array is traversed from index 0 to 4 sequentially. The first position where 64 is stored presently, after traversing whole array it is clear that 11 is the lowest value.

64      25      12      22      11  

Thus, replace 64 with 11. After one iteration 11, which happens to be the least value in the array, tends to appear in the first position of the sorted list.

 11      25      12      22      64   

Second Pass:

For the second position, where 25 is present, again traverse the rest of the array in a sequential manner.

   11      25      12      22      64   

After traversing, we found that 12 is the second lowest value in the array and it should appear at the second place in the array, thus swap these values.

 11      12      25      22      64   

Third Pass:

Now, for third place, where 25 is present again traverse the rest of the array and find the third least value present in the array.

 11      12      25      22      64   

While traversing, 22 came out to be the third least value and it should appear at the third place in the array, thus swap 22 with element present at third position.

 11      12      22      25      64   

Fourth pass:

Similarly, for fourth position traverse the rest of the array and find the fourth least element in the array 
As 25 is the 4th lowest value hence, it will place at the fourth position.

   11      12      22      25      64   

Fifth Pass:

At last the largest value present in the array automatically get placed at the last position in the array
The resulted array is the sorted array.

11      12      22      25      64   


2. Bubble sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity is quite high.

Working of Bubble Sort algorithm:

Lets consider the following array as an example: arr[]  = {5, 1, 4, 2, 8}

First Pass:

Bubble sort starts with very first two elements, comparing them to check which one is greater.
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1. 
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4 
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2 
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.

Second Pass:

Now, during second iteration it should look like this:

( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ) 
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2 
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8
Third Pass:

Now, the array is already sorted, but our algorithm does not know if it is completed.
The algorithm needs one whole pass without any swap to know it is sorted.

( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 ) 
( 1 2 4 5 8 ) –> ( 1 2 4 5 8

Illustration:

Illustration of Bubble Sort

Illustration of Bubble Sort


3. Insertion Sort

Insertion sort is a simple sorting algorithm that works similarly to the way you sort playing cards in your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part.

Working of Insertion Sort algorithm:

Consider an example: arr[]: {12, 11, 13, 5, 6}

   12      11      13      5      6   

First Pass:

  • Initially, the first two elements of the array are compared in insertion sort.
   12      11      13      5      6   
  • Here, 12 is greater than 11 hence they are not in the ascending order and 12 is not at its correct position. Thus, swap 11 and 12.
  • So, for now 11 is stored in a sorted sub-array.
   11      12      13      5      6   

Second Pass:

  •  Now, move to the next two elements and compare them
   11      12      13      5      6   
  • Here, 13 is greater than 12, thus both elements seems to be in ascending order, hence, no swapping will occur. 12 also stored in a sorted sub-array along with 11

Third Pass:

  • Now, two elements are present in the sorted sub-array which are 11 and 12
  • Moving forward to the next two elements which are 13 and 5
   11      12      13      5      6   
  • Both 5 and 13 are not present at their correct place so swap them
   11      12      5      13      6   
  • After swapping, elements 12 and 5 are not sorted, thus swap again
   11      5      12      13      6   
  • Here, again 11 and 5 are not sorted, hence swap again
   5      11      12      13      6   
  • here, it is at its correct position

Fourth Pass:

  • Now, the elements which are present in the sorted sub-array are 5, 11 and 12
  • Moving to the next two elements 13 and 6
   5      11      12      13      6   
  • Clearly, they are not sorted, thus perform swap between both
   5      11      12      6      13   
  • Now, 6 is smaller than 12, hence, swap again
   5      11      6      12      13   
  • Here, also swapping makes 11 and 6 unsorted hence, swap again
   5      6      11      12      13   
  • Finally, the array is completely sorted.

Illustrations:

insertion-sort
 

4. Merge Sort

The Merge Sort algorithm is a sorting algorithm that is based on the Divide and Conquers paradigm. In this algorithm, the array is initially divided into two equal halves and then they are combined in a sorted manner.

Let’s see how Merge Sort uses Divide and Conquer:

The merge sort algorithm is an implementation of the divide and conquers technique. Thus, it gets completed in three steps:

  1. Divide: In this step, the array/list divides itself recursively into sub-arrays until the base case is reached.
  2. Conquer: Here, the sub-arrays are sorted using recursion.
  3. Combine: This step makes use of the merge( ) function to combine the sub-arrays into the final sorted array.

Working of Merge Sort algorithm:

To know the functioning of merge sort, lets consider an array arr[] = {38, 27, 43, 3, 9, 82, 10}

At first, check if the left index of array is less than the right index, if yes then calculate its mid point

 

Now, as we already know that merge sort first divides the whole array iteratively into equal halves, unless the atomic values are achieved. 
Here, we see that an array of 7 items is divided into two arrays of size 4 and 3 respectively.

 

Now, again find that is left index is less than the right index for both arrays, if found yes, then again calculate mid points for both the arrays.

 

Now, further divide these two arrays into further halves, until the atomic units of the array is reached and further division is not possible.

 

After dividing the array into smallest units, start merging the elements again based on comparison of size of elements
Firstly, compare the element for each list and then combine them into another list in a sorted manner.

 

After the final merging, the list looks like this:

 

5. Quick sort

Quicksort is a sorting algorithm based on the divide and conquer approach where an array is divided into subarrays by selecting a pivot element (element selected from the array).

  1. While dividing the array, the pivot element should be positioned in such a way that elements less than the pivot are kept on the left side, and elements greater than the pivot is on the right side of the pivot.
  2. The left and right subarrays are also divided using the same approach. This process continues until each subarray contains a single element.
  3. At this point, elements are already sorted. Finally, elements are combined to form a sorted array.

Working of Quick Sort algorithm:

To know the functioning of Quick sort, let’s consider an array arr[] = {10, 80, 30, 90, 40, 50, 70}

  • Indexes:  0   1   2   3   4   5   6 
  • low = 0, high =  6, pivot = arr[h] = 70
  • Initialize index of smaller element, i = -1
Step1

Step1

  • Traverse elements from j = low to high-1
  • j = 0: Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
  • i = 0 
  • arr[] = {10, 80, 30, 90, 40, 50, 70} // No change as i and j are same
  • j = 1: Since arr[j] > pivot, do nothing
Step2

Step2

  • j = 2 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
  • i = 1
  • arr[] = {10, 30, 80, 90, 40, 50, 70} // We swap 80 and 30 
Step3

Step3

  • j = 3 : Since arr[j] > pivot, do nothing // No change in i and arr[]
  • j = 4 : Since arr[j] <= pivot, do i++ and swap(arr[i], arr[j])
  • i = 2
  • arr[] = {10, 30, 40, 90, 80, 50, 70} // 80 and 40 Swapped
Step 4

Step 4

  • j = 5 : Since arr[j] <= pivot, do i++ and swap arr[i] with arr[j] 
  • i = 3 
  • arr[] = {10, 30, 40, 50, 80, 90, 70} // 90 and 50 Swapped 
Step 5

Step 5

  • We come out of loop because j is now equal to high-1.
  • Finally we place pivot at correct position by swapping arr[i+1] and arr[high] (or pivot) 
  • arr[] = {10, 30, 40, 50, 70, 90, 80} // 80 and 70 Swapped 
Step 6

Step 6

  • Now 70 is at its correct place. All elements smaller than 70 are before it and all elements greater than 70 are after it.
  • Since quick sort is a recursive function, we call the partition function again at left and right partitions
Step 7

Step 7

  • Again call function at right part and swap 80 and 90
Step 8

Step 8


6. Heap sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to the selection sort where we first find the minimum element and place the minimum element at the beginning. Repeat the same process for the remaining elements.

Working of Heap Sort algorithm:

To understand heap sort more clearly, let’s take an unsorted array and try to sort it using heap sort. Consider the array: arr[] = {4, 10, 3, 5, 1}.

Build Complete Binary Tree: Build a complete binary tree from the array.

Build complete binary tree from the array

Build complete binary tree from the array

Transform into max heap: After that, the task is to construct a tree from that unsorted array and try to convert it into max heap.

  • To transform a heap into a max-heap, the parent node should always be greater than or equal to the child nodes
    • Here, in this example, as the parent node 4 is smaller than the child node 10, thus, swap them to build a max-heap.
  • Transform it into a max heap

 

  • Now, as seen, 4 as a parent is smaller than the child 5, thus swap both of these again and the resulted heap and array should be like this:
Make the tree a max heap

Make the tree a max heap

Perform heap sort: Remove the maximum element in each step (i.e., move it to the end position and remove that) and then consider the remaining elements and transform it into a max heap.

  • Delete the root element (10) from the max heap. In order to delete this node, try to swap it with the last node, i.e. (1). After removing the root element, again heapify it to convert it into max heap.
    • Resulted heap and array should look like this:
Remove 10 and perform heapify

Remove 10 and perform heapify

  • Repeat the above steps and it will look like the following:
Remove 5 and perform heapify

Remove 5 and perform heapify

  • Now remove the root (i.e. 3) again and perform heapify.
Remove 4 and perform heapify

Remove 4 and perform heapify

  • Now when the root is removed once again it is sorted. and the sorted array will be like arr[] = {1, 3, 4, 5, 10}.
The sorted array

The sorted array


7. Counting sort

Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then do some arithmetic to calculate the position of each object in the output sequence. 

Working of Counting Sort algorithm:

Consider the array: arr[] = {1, 4, 1, 2, 7, 5, 2}.

  • Input data: {1, 4, 1, 2, 7, 5, 2}
  • Take a count array to store the count of each unique object.
  • Now, store the count of each unique element in the count array
  • If any element repeats itself, simply increase its count.

scene00865

  • Here, the count of each unique element in the count array is as shown below:
    • Index:     0  1  2  3  4  5  6  7  8  9
    • Count:    0  2  2  0   1  1  0  1  0  0

scene01153

  • Modify the count array such that each element at each index stores the sum of previous counts.
    • Index:      0  1  2  3  4  5  6  7  8  9
    • Count:     0  2  4  4  5  6  6  7  7  7
  • The modified count array indicates the position of each object in the output sequence.
  • Find the index of each element of the original array in the count array. This gives the cumulative count.

scene01297

scene01369

  • Rotate the array clockwise for one time.
    • Index:     0 1 2 3 4 5 6 7 8 9 
    • Count:     0 0 2 4 4 5 6 6 7 7

  scene02881

  •   Output each object from the input sequence followed by increasing its count by 1.
  •   Process the input data: 1, 4, 1, 2, 7, 5, 2. Position of 1 is 0.
  •   Put data 1 at index 0 in output. Increase count by 1 to place next data 1 at an index 1 greater than this index.

scene02521

  • After placing each element at its correct position, decrease its count by one.

Some other Sorting algorithms:

1. Radix sort

Radix sort is a non-comparative sorting algorithm that is used to sort the data in lexicographical (dictionary) order.

It uses counting sort as a subroutine, to sort an array of integer digit by digit and array of strings character by character.

2. Bucket sort

Bucket Sort is a sorting algorithm that divides the unsorted array elements into several groups called buckets. Each bucket is then sorted by using any of the suitable sorting algorithms or recursively applying the same bucket algorithm.

Finally, the sorted buckets are combined to form a final sorted array.

3. Shell sort 

Shell sort is mainly a variation of Insertion Sort. In insertion sort, we move elements only one position ahead. When an element has to be moved far ahead, many movements are involved. The idea of ShellSort is to allow the exchange of far items. In Shell sort, we make the array h-sorted for a large value of h. We keep reducing the value of h until it becomes 1. An array is said to be h-sorted if all sublists of every h’th element are sorted.

4. Tim Sort

Timsort is a hybrid sorting algorithm. It is used to give optimal results while dealing with real-world data.

Timsort has been derived from Insertion Sort and Binary Merge Sort. At first, the array is stored into smaller chunks of data known as runs. These runs are sorted using insertion sort and then merged using the merge sort.

5. Comb Sort

Comb Sort is mainly an improvement over Bubble Sort. Bubble sort always compares adjacent values. So all inversions are removed one by one. Comb Sort improves on Bubble Sort by using a gap of the size of more than 1. The gap starts with a large value and shrinks by a factor of 1.3 in every iteration until it reaches the value 1. Thus Comb Sort removes more than one inversion count with one swap and performs better than Bubble Sort.

6. Pigeonhole sorting

Pigeonhole sorting is a sorting algorithm that is suitable for sorting lists of elements where the number of elements and the number of possible key values are approximately the same.

7. Cycle Sort

Cycle sort is an in-place sorting Algorithm, unstable sorting algorithm, and a comparison sort that is theoretically optimal in terms of the total number of writes to the original array. 

8. Cocktail Sort 

Cocktail Sort is a variation of Bubble sort. The Bubble sort algorithm always traverses elements from left and moves the largest element to its correct position in the first iteration and second-largest in the second iteration and so on. Cocktail Sort traverses through a given array in both directions alternatively. Cocktail sort does not go through the unnecessary iteration making it efficient for large arrays.

Cocktail sorts break down barriers that limit bubble sorts from being efficient enough on large arrays by not allowing them to go through unnecessary iterations on one specific region (or cluster) before moving onto another section of an array.

9. Strand sort

Strand sort is a recursive sorting algorithm that sorts items of a list into increasing order. It has O(n²) worst time complexity which occurs when the input list is reverse sorted. It has a best case time complexity of O(n) which occurs when the input is a list that is already sorted.

10. Bitonic Sort 

Bitonic Sort is a classic parallel algorithm for sorting.

  • The number of comparisons done by Bitonic sort is more than popular sorting algorithms like Merge Sort [ does O(log N) comparisons], but Bitonic sort is better for parallel implementation because we always compare elements in a predefined sequence and the sequence of comparison doesn’t depend on data. Therefore it is suitable for implementation in hardware and parallel processor array.
  • Bitonic Sort must be done if the number of elements to sort is 2^n. The procedure of bitonic sequence fails if the number of elements is not in the aforementioned quantity precisely.

11. Stooge Sort 

Stooge Sort is a recursive sorting algorithm. It is not much efficient but an interesting sorting algorithm. It generally divides the array into two overlapping parts (2/3 each). After that it performs sorting in first 2/3 part and then it performs sorting in last 2/3 part. And then, sorting is done on first 2/3 part to ensure that the array is sorted.

The key idea is that sorting the overlapping part twice exchanges the elements between the other two sections accordingly.

12. Tag Sort

This is not a new sorting algorithm, but an idea when we need to avoid swapping of large objects or need to access elements of a large array in both original and sorted orders.
A common sorting task is to sort elements of an array using a sorting algorithm like Quick Sort, Bubble Sort.. etc, but there may be times when we need to keep the actual array intact and use a “tagged” array to store the correct positioning of the array when it is sorted. When we want to access elements in a sorted way, we can use this “tagged” array.

13. Tree sort

Tree sort is a sorting algorithm that is based on Binary Search Tree data structure. It first creates a binary search tree from the elements of the input list or array and then performs an in-order traversal on the created binary search tree to get the elements in sorted order. 

14. Cartesian Sort 

Cartesian Sort is an Adaptive Sorting as it sorts the data faster if data is partially sorted. In fact, there are very few sorting algorithms that make use of this fact. For example consider the array {5, 10, 40, 30, 28}. The input data is partially sorted too as only one swap between “40” and “28” results in a completely sorted order. 

15. Odd-Even Sort / Brick Sort

This is basically a variation of bubble-sort. This algorithm is divided into two phases- Odd and Even Phase. The algorithm runs until the array elements are sorted and in each iteration two phases occurs- Odd and Even Phases.
In the odd phase, we perform a bubble sort on odd indexed elements and in the even phase, we perform a bubble sort on even indexed elements.

16. 3-way Merge Sort

Merge sort involves recursively splitting the array into 2 parts, sorting, and finally merging them. A variant of merge sort is called 3-way merge sort where instead of splitting the array into 2 parts we split it into 3 parts. Merge sort recursively breaks down the arrays to subarrays of size half. Similarly, the 3-way Merge sort breaks down the arrays to subarrays of size one-third. 

17. Gnome sort

Gnome Sort also called Stupid sort is based on the concept of a Garden Gnome sorting his flower pots. A garden gnome sorts the flower pots by the following method-  

  • He looks at the flower pot next to him and the previous one; if they are in the right order he steps one pot forward, otherwise, he swaps them and steps one pot backward.
  • If there is no previous pot (he is at the starting of the pot line), he steps forwards; if there is no pot next to him (he is at the end of the pot line), he is done.

18. Cocktail shaker sort

Cocktail Sort is a variation of Bubble sort. The Bubble sort algorithm always traverses elements from the left and moves the largest element to its correct position in the first iteration and the second-largest in the second iteration and so on. Cocktail Sort traverses through a given array in both directions alternatively. Cocktail sort does not go through the unnecessary iteration making it efficient for large arrays.

Cocktail sorts break down barriers that limit bubble sorts from being efficient enough on large arrays by not allowing them to go through unnecessary iterations on one specific region (or cluster) before moving onto another section of an array.

Comparison of Complexity Analysis Between Sorting Algorithms:

NameBest Case  Average Case  Worst Case MemoryStable   Method Used
Quick Sort[Tex]n log n[/Tex][Tex]n log n[/Tex][Tex]n^{2}[/Tex][Tex]log n[/Tex]NoPartitioning
Merge Sort[Tex]n log n[/Tex][Tex]n log n[/Tex][Tex]n log n[/Tex]nYesMerging
Heap Sort[Tex]n log n[/Tex][Tex]n log n[/Tex][Tex]n log n[/Tex]1NoSelection
Insertion Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1YesInsertion
Tim Sortn[Tex]n log n[/Tex][Tex]n log n[/Tex]nYesInsertion & Merging
Selection Sort[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1NoSelection
Shell Sort[Tex]n log n[/Tex][Tex]n^{4/3}[/Tex][Tex]n^{3/2}[/Tex]1NoInsertion
Bubble Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1YesExchanging
Tree Sort[Tex]n log n[/Tex][Tex]n log n[/Tex][Tex]n log n[/Tex]nYesInsertion
Cycle Sort[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1NoSelection
Strand Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]nYesSelection
Cocktail Shaker Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1YesExchanging
Comb Sort[Tex]n log n[/Tex][Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1NoExchanging
Gnome Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1YesExchanging
Odd–even Sortn[Tex]n^{2}[/Tex][Tex]n^{2}[/Tex]1YesExchanging


Previous Article
Next Article

Similar Reads

Analysis of different sorting techniques
In this article, we will discuss important properties of different sorting techniques including their complexity, stability and memory constraints. Before understanding this article, you should understand basics of different sorting techniques (See : Sorting Techniques). Time complexity Analysis - We have discussed the best, average and worst case
5 min read
Sorting objects using In-Place sorting algorithm
Given an array of red, blue and yellow objects, the task is to use an in-place sorting algorithm to sort the array in such a way that all the blue objects appear before all the red objects and all the red objects appear before all the yellow objects.Examples: Input: arr[] = {"blue", "red", "yellow", "blue", "yellow"} Output: blue blue red yellow ye
7 min read
Different ways of sorting Dictionary by Keys and Reverse sorting by keys
Prerequisite: Dictionaries in Python A dictionary is a collection which is unordered, changeable and indexed. In Python, dictionaries are written with curly brackets, and they have keys and values. We can access the values of the dictionary using keys. In this article, we will discuss 10 different ways of sorting the Python dictionary by keys and a
8 min read
What is Sorting in DSA | Sorting meaning
Sorting is defined as the process of arranging a collection of data elements in a specific order, usually in ascending or descending order based on a specific attribute of the data elements. Characteristics of Sorting:Time Complexity: Time complexity, a measure of how long it takes to run an algorithm, is used to categorize sorting algorithms. The
3 min read
Know Your Sorting Algorithm | Set 1 (Sorting Weapons used by Programming Languages)
Ever wondered how sort() function we use in C++/Java or sorted() in Python work internally? Here is a list of all the inbuilt sorting algorithms of different programming languages and the algorithm they use internally. C’s qsort() – QuicksortBest Case Time Complexity- O(NlogN)Average Case Time Complexity- O(NlogN)Worse Case Time Complexity- O(N2)Au
2 min read
What is the stupidest sorting algorithm? (Worst Sorting Algorithm)
Bogo sort stands out as the undisputed champion of stupidity. Unlike other sorting algorithms that follow a structured approach, Bogo sort relies on sheer luck and randomness to achieve its goal. How Bogo Sort Works?Bogo sort operates on the following principle: Randomly shuffle the elements in the list.Check if the list is sorted.If the list is no
2 min read
Optimization techniques for Gradient Descent
Gradient Descent is a widely used optimization algorithm for machine learning models. However, there are several optimization techniques that can be used to improve the performance of Gradient Descent. Here are some of the most popular optimization techniques for Gradient Descent: Learning Rate Scheduling: The learning rate determines the step size
4 min read
Various load balancing techniques used in Hash table to ensure efficient access time
Load balancing refers to the process of distributing workloads evenly across multiple servers, nodes, or other resources to ensure optimal resource utilization, maximize output, minimize response time, and avoid overload of any single resource. Load balancing helps to improve the reliability and scalability of applications and systems, as well as r
3 min read
Basic Algorithm Techniques Not Taught in Academics
We generally study most of the algorithmic techniques in academics like Searching, Sorting, Dynamic Programming, Greedy Algorithms, Divide and Conquer, Backtracking, etc. But below techniques are generally not taught and used a lot to solve questions in interviews and competitive programming. Prefix Sum Technique In this technique we preprocess the
3 min read
Optimization Techniques | Set 1 (Modulus)
Modulus operator is costly. The modulus operator (%) in various languages is costly operation. Ultimately every operator/operation must result in processor instructions. Some processors won't have modulus instruction at hardware level, in such case the compilers will insert stubs (predefined functions) to perform modulus. It impacts performance. Th
3 min read
Article Tags :
Practice Tags :
three90RightbarBannerImg